Home
Music_Metasearch
Music Top Sites
Music Store

AllMusicListings
Concert Listings
Concert Tickets

AllMusicTalk
Chat Rooms
Message Boards

MusicNews
Pop Music News
Pop Music Reviews
Music Business
MP3 News

Community Blogs
Free Member Blogs

AllMusicPages
Free Web Pages

AllMusicBookmarks
Your Bookmarks

AllMusicFun
Musical Postcards
Relationship Test
Tarot Readings
Numerology

Music Auctions
Auctions
Classifieds

Music Apparel
AllMusicSearch Apparel

Music Store
MP3 Players
Audio Equipment
MP3 Software

Musical Instruments

Music Books
Music Magazines

Music T-Shirts

Alternative Rock
Blues
Broadway & Vocal
Children's
Christian & Gospel
Classic Rock
Classical
Country
Dance & DJ
Folk
Hard Rock & Metal
International
Jazz
Latin Music
Miscellaneous
New Age
Opera & Vocal
Pop
R&B
Rap & Hip-Hop
Rock
Soundtracks

Music Videos
Music DVDs

AllMusicSearch Music Directory
Web Directory
AllMusicSearch.com Music Guide

Polyominoes (76)

Editor's Picks:

http://www.xs4all.nl/~gp/PolyominoSolver/Polyomino.html
» Gerard's Universal Polyomino Solver Open in a new browser windowEditor's Pick
   Computes from 1 to 3.38 billion solutions with graphic display to each of the 60+ problems of different sizes and shapes. Pieces vary from pentominoes to heptominoes, sometimes in combination. Table summarizes properties and example solution of each probl
   http://www.xs4all.nl/~gp/PolyominoSolver/Polyomino.html

Sites:

http://www.ieeta.pt/~tos/animals.html
» Animal Enumerations Open in a new browser window
   Enumeration on regular tilings of the Euclidean and Hyperbolic planes.
   http://www.ieeta.pt/~tos/animals.html
http://www.geom.uiuc.edu/~summer95/gardberg/pent.html
» Anna's Pentomino Page Open in a new browser window
   Anna Gardberg makes pentominoes out of sculpey and agate.
   http://www.geom.uiuc.edu/~summer95/gardberg/pent.html
http://www.eldar.org/~problemi/pfun/blocked.html
» Blocking Polyominos Open in a new browser window
   Rodolfo Kurchan searches the smallest polyomino such that a particular number of copies can form a blocked pattern. With solutions.
   http://www.eldar.org/~problemi/pfun/blocked.html
http://sti.br.inter.net/rkyrmse/canonic-e.htm
» Canonical Polygons Open in a new browser window
   Ronald Kyrmse investigates grid polygons in which all side lengths are one or sqrt(2).
   http://sti.br.inter.net/rkyrmse/canonic-e.htm
http://mathpuzzle.com/eternity.html
» Christopher Monckton's Eternity Puzzle Open in a new browser window
   Rules, the solution by Alex Selby and Oliver Riordan, other resources and links. The puzzle is made up of 209 pieces of polydrafters, each one is a combination of 12-30/60/90 triangles.
   http://mathpuzzle.com/eternity.html
http://www.cs.uwaterloo.ca/journals/JIS/HICK2/chcp.html
» Counting Horizontally Convex Polyominoes Open in a new browser window
   Journal of Integer Sequences, Vol. 2 (1999), Article 99.1.8. Defines and counts horizontal convexity.
   http://www.cs.uwaterloo.ca/journals/JIS/HICK2/chcp.html
http://math.rice.edu/~lanius/Lessons/Polys/poly1.html
» Cynthia Lanius' Lesson: Polyominoes Introduction Open in a new browser window
   From tetris to hexominoes, Cynthia explains them in color.
   http://math.rice.edu/~lanius/Lessons/Polys/poly1.html
http://www-cs-faculty.stanford.edu/~knuth/papers/dancing-color.ps.gz
» Dancing Links Open in a new browser window
   Don Knuth discusses implementation details of polyomino search algorithms (compressed PostScript format).
   http://www-cs-faculty.stanford.edu/~knuth/papers/dancing-color.ps.gz
http://www.archduke.demon.co.uk/eternity/index.html
» Eternity Page Open in a new browser window
   Alex Selby's page with a description of his solution method, with illustrations in .png and .pdf files.
   http://www.archduke.demon.co.uk/eternity/index.html
http://delta.cs.cinvestav.mx/~mcintosh/comun/flexagon/flexagon.html
» Flexagons Open in a new browser window
   Conrad and Hartline's 1962 article on Flexagons.
   http://delta.cs.cinvestav.mx/~mcintosh/comun/flexagon/flexagon.html
http://www.gamepuzzles.com/
» Gamepuzzles Open in a new browser window
   Polyomino and polyform games and puzzles manufactured by Kadon Enterprises Inc.
   http://www.gamepuzzles.com/
http://www.xs4all.nl/~gp/pentomino.html
» Gerard's Pentomino Page Open in a new browser window
   Illustrates the 12 shapes. symmetrical combinations.
   http://www.xs4all.nl/~gp/pentomino.html
http://mathworld.wolfram.com/Golygon.html
» Golygons by Mathworld Open in a new browser window
   What they are, and how to find them.
   http://mathworld.wolfram.com/Golygon.html
http://delta.cs.cinvestav.mx/~mcintosh/oldweb/pflexagon.html
» Harold McIntosh's Flexagon Papers Open in a new browser window
   Including copies of the original 1962 Conrad-Hartline papers. Abstract, html-pages, or .pdf documents.
   http://delta.cs.cinvestav.mx/~mcintosh/oldweb/pflexagon.html
http://www.picciotto.org/math-ed/puzzles/
» Henri Picciotto's Geometric Puzzles in the Classroom Open in a new browser window
   Polyform puzzle lessons for math educators to use with their students, including polyominoes, supertangrams, and polyarcs.
   http://www.picciotto.org/math-ed/puzzles/
http://www.plunk.org/~hatch/HyperbolicTesselations/
» Hyperbolic Planar Tessellations Open in a new browser window
   Don Hatch's page on hyperbolic tesselations with numerous illustrations.
   http://www.plunk.org/~hatch/HyperbolicTesselations/
http://www.theory.csc.uvic.ca/~cos/inf/misc/PentInfo.html
» Information on Pentomino Puzzles Open in a new browser window
   At the Combinatorial Object Server.
   http://www.theory.csc.uvic.ca/~cos/inf/misc/PentInfo.html
http://www.thery.free.fr/index.php?option=com_content&task=view&id=18&Itemid=44
» Java pentominoes Open in a new browser window
   Thery families web site with pentomino solver. (English/French)[Java].
   http://www.thery.free.fr/index.php?option=com_content&task=view&id=18&Itemid=44
http://www.borderschess.org/KTtess.htm
» Knight's Move Tessellations Open in a new browser window
   Dan Thomasson looks at tesselations with numerous unexpected shapes traced out by knight moves.
   http://www.borderschess.org/KTtess.htm
http://www.ericharshbarger.org/lego/pentominoes.html
» Lego Pentominos Open in a new browser window
   Eric Harshbarger. This puzzle maker says that the hard part was finding legos in enough different colors.
   http://www.ericharshbarger.org/lego/pentominoes.html
http://www.basic.northwestern.edu/g-buehler/pentominoes/
» Logical Art and the Art of Logic Open in a new browser window
   Pentomino pictures, software and other resources by Guenter Albrecht-Buehler.
   http://www.basic.northwestern.edu/g-buehler/pentominoes/
http://mathforum.org/wagon/spring97/p826.html
» Mathforum : Minimal Domino Tiling Open in a new browser window
   Tiling a square without cutting it into two.(Problem of the week 826, Spring 1997)
   http://mathforum.org/wagon/spring97/p826.html
http://mathforum.org/wagon/spring98/p856.html
» Mathforum : Tiling Rectangles from Ell Open in a new browser window
   Stan Wagon asks which rectangles can be tiled with an ell-tromino.
   http://mathforum.org/wagon/spring98/p856.html
http://mathforum.org/pom/project2.95.html
» Mathforum : a Pentomino Problem Open in a new browser window
   Geometry Forum: Lists the pentominoes; fold them to form a cube; play a pentomino game. (project of the month, 1995)
   http://mathforum.org/pom/project2.95.html
http://www.maths.soton.ac.uk/EMIS/journals/BAG/vol.35/no.1/b35h1har.abs
» Maximum Convex Hulls of Connected Systems of Segments and of Polyominoes Open in a new browser window
   Bezdek, Brass, and Harborth. Abstract to an article which places bounds on the convex area needed to contain a polyomino. (Contributions to Algebra and Geometry Volume 35 (1994), No. 1, 37-43.)
   http://www.maths.soton.ac.uk/EMIS/journals/BAG/vol.35/no.1/b35h1har.abs
http://www.vicher.cz/puzzle/
» Miroslav Vicher's Puzzles Pages Open in a new browser window
   Polyforms (polyominoes, and polyiamonds) graphics, tables and resources (English/Czech).
   http://www.vicher.cz/puzzle/
http://www.math.ucf.edu/~reid/Polyomino/index.html
» My Polyomino Page Open in a new browser window
   Michael Reid's numerous articles on polyominoes and tilnig, with references and links.
   http://www.math.ucf.edu/~reid/Polyomino/index.html
http://www.stetson.edu/~efriedma/packing.html
» Packing Shapes Open in a new browser window
   Erich Friedman's Introduction to a variety of packing and tiling problems.
   http://www.stetson.edu/~efriedma/packing.html
http://www.stetson.edu/~efriedma/mathmagic/0903.html
» Pairwise Touching Hypercubes Open in a new browser window
   Erich Friedman's problem of the month asks how to partition the unit cubes of an a*b*c-unit rectangular box into as many connected polycubes as possible with a shared face between every pair of polycubes. Answers provided.
   http://www.stetson.edu/~efriedma/mathmagic/0903.html
http://www.virtu-software.com/PentoMania/
» Pento-Mania Open in a new browser window
   Pentomino based puzzle game lets children solve and create geometric puzzles. Win32 software, try or buy.
   http://www.virtu-software.com/PentoMania/
http://www.cs.cmu.edu/~desilva/pento/pento.html
» Pentomino Applet Open in a new browser window
   Rujith de Silva's applet puzzle offers games of four different sized rectangles. Source code available. [Java]
   http://www.cs.cmu.edu/~desilva/pento/pento.html
http://www.xprt.net/~munizao/polycover/
» Pentomino Covers Open in a new browser window
   Problems on minimal covers.
   http://www.xprt.net/~munizao/polycover/
http://www.scottkim.com/inversions/gallery/golomb.html
» Pentomino Dissection of a Square Annulus Open in a new browser window
   From Scott Kim's Inversions Gallery.
   http://www.scottkim.com/inversions/gallery/golomb.html
http://membres.lycos.fr/pentomino/index.html
» Pentomino Homepage Open in a new browser window
   Lorente Philippe's site describes the building blocks, nomenclature, solutions, and numerous games. (French/English)
   http://membres.lycos.fr/pentomino/index.html
http://www.pentomino.tvnet.hu/
» Pentomino HungarIQa Open in a new browser window
   Kati presents a pentomino puzzle using poly-rhombs instead of poly-squares. [English/French/German/Hungarian]
   http://www.pentomino.tvnet.hu/
http://www.exi-online.de/html/eintritt_e.html
» Pentomino Puzzles. Open in a new browser window
   Pentomino solver with download. Windows 95 and later required. [German/English]
   http://www.exi-online.de/html/eintritt_e.html
http://abasmith.co.uk/pentanomes/pentanomes.html
» Pentomino Relationships Open in a new browser window
   Symmetries in the families of rectangular solutions.
   http://abasmith.co.uk/pentanomes/pentanomes.html
http://www.andrews.edu/~calkins/math/pentos.htm
» Pentominoes Open in a new browser window
   Expository paper by R. Bhat and A. Fletcher. Covers pre-Golomb discoveries. the triplication problem and other aspects.
   http://www.andrews.edu/~calkins/math/pentos.htm
http://www.cimt.plymouth.ac.uk/resources/puzzles/pentoes/pentoint.htm
» Pentominoes : an Introduction Open in a new browser window
   Centre for Innovation in Mathematics Teaching presents colourful examples of many tiling problems, duplication, triplication, etc.
   http://www.cimt.plymouth.ac.uk/resources/puzzles/pentoes/pentoint.htm
http://www.mathematik.ch/anwendungenmath/pento/
» Pentominos Open in a new browser window
   B. Berchtold's applet helps tile a 6x10 rectangle. [German]
   http://www.mathematik.ch/anwendungenmath/pento/
http://math.hws.edu/xJava/PentominosSolver/
» Pentominos Puzzle Solver Open in a new browser window
   David Eck's graphical solver applet uses recursive technique. Source code available. [Java]
   http://math.hws.edu/xJava/PentominosSolver/
http://userpages.monmouth.com/~colonel/polycur.html
» Polyform Curiosities Open in a new browser window
   Topics include exclusion, compatibility, and wallpaper. Includes examples and charts.
   http://userpages.monmouth.com/~colonel/polycur.html
http://web.inter.nl.net/users/C.Eggermont/Links.new/Puzzles/Polyforms.and.dissection/index.noframe.shtml
» Polyform and Dissection Puzzle Links Open in a new browser window
   Christian Eggermont's link page.
   http://web.inter.nl.net/users/C.Eggermont/Links.new/Puzzles/Polyforms.and.dissection/index.noframe.shtml
http://www.mathpuzzle.com/polyom.htm
» Polyforms Open in a new browser window
   Ed Pegg Jr.'s site has pages on tiling, packing, and related problems involving polyominos, polyiamonds, polyspheres, and related shapes.
   http://www.mathpuzzle.com/polyom.htm
http://freshmeat.net/projects/hextk/
» Polygon Puzzle Open in a new browser window
   Open source polyomino and polyform placement solitaire game.
   http://freshmeat.net/projects/hextk/
http://www.monmouth.com/~colonel/xpoly/xpoly.html
» Polyiamond Exclusion Open in a new browser window
   Colonel Sicherman asks what fraction of the triangles need to be removed from a regular triangular tiling of the plane, in order to make sure that the remaining triangles contain no copy of a given polyiamond.
   http://www.monmouth.com/~colonel/xpoly/xpoly.html
http://www.mathpages.com/home/kmath039.htm
» Polyomino Enumeration Open in a new browser window
   K. S. Brown examines the number of polyominoes up to order 12 for various cases involving rotation or reflections. Equations linking the cases are proposed.
   http://www.mathpages.com/home/kmath039.htm
http://www.srcf.ucam.org/~jsm28/tiling/
» Polyomino and Polyhex Tiling Open in a new browser window
   Joseph Myer's tables of polyominoes and of polyomino tilings, in Postscript format.
   http://www.srcf.ucam.org/~jsm28/tiling/
http://members.tripod.com/~modularity/pol.htm
» Polyominoes Open in a new browser window
   Describes a numerical invariant that can be used to classify polyominoes.
   http://members.tripod.com/~modularity/pol.htm
http://homepages.cwi.nl/~jankok/etc/Polyomino.html
» Polyominoes: Theme and Variations Open in a new browser window
   Jankok presents information about filling rectangles, other polygons, boxes, etc., with dominoes, trominoes, tetrominoes, pentominoes, solid pentominoes, hexiamonds, and whatever else people have invented as variations of a theme. References included.
   http://homepages.cwi.nl/~jankok/etc/Polyomino.html
http://www.uwgb.edu/dutchs/symmetry/polypoly.htm
» Polypolygon Tilings Open in a new browser window
   S. Dutch discusses polyominoes, poliamonds, and polypolygons with special attention to tiling characteristics.
   http://www.uwgb.edu/dutchs/symmetry/polypoly.htm
http://www.math.ucf.edu/~reid/Polyomino/14omino02_rect.html
» Primes of a 14-omino Open in a new browser window
   Michael Reid shows that a 3x6 rectangle with a 2x2 bite removed can tile a (much larger) rectangle. It is open whether it can do this using an odd number of copies.
   http://www.math.ucf.edu/~reid/Polyomino/14omino02_rect.html
http://www.eldar.org/~problemi/pfun/pfun.html
» Puzzle Fun Open in a new browser window
   Newsletter edited by Rodolfo Kurchan about pentominoes and other math problems.
   http://www.eldar.org/~problemi/pfun/pfun.html
http://www.eklhad.net/polyomino/
» Rectifiable Polyomino Open in a new browser window
   Karl Dahlke explains and demonstrates tiling. Includes C-program source.
   http://www.eklhad.net/polyomino/
http://diamond.boisestate.edu/~sulanke/PAPER1/PergolaSulanke/PergolaSulanke.html
» Schröder Triangles, Paths, and Parallelogram Polyominoes Open in a new browser window
   A paper on their enumeration by Elisa Pergola and Robert A. Sulanke.
   http://diamond.boisestate.edu/~sulanke/PAPER1/PergolaSulanke/PergolaSulanke.html
http://www.moerig.com/somatic/
» Somatic Open in a new browser window
   A solver for arbitrary polyomino and polycube puzzles. Binary code and source downloads available.
   http://www.moerig.com/somatic/
http://www.lrdev.com/lr/c/sqfig.html
» Sqfig and Sqtile Open in a new browser window
   Eric Laroche presents computer programs for generating polyominoes and polyomino tilings. Includes source codes in C, and binaries.
   http://www.lrdev.com/lr/c/sqfig.html
http://homepage2.nifty.com/yuki-tani/index_e.html
» Taniguchi's Programs Open in a new browser window
   Windows software to solve polyiamond and sliding block puzzles.
   http://homepage2.nifty.com/yuki-tani/index_e.html
http://www.ics.uci.edu/~eppstein/junkyard/polyomino.html
» The Geometry Junkyard: Polyominoes Open in a new browser window
   Numerous links, sorted alphabetically.
   http://www.ics.uci.edu/~eppstein/junkyard/polyomino.html
http://kevingong.com/Polyominoes/
» The Mathematics of Polyominoes Open in a new browser window
   Kevin Gong offers download of his polyominoes games shareware for Windows and Mac. 100 boards are included. A Java version is under development.
   http://kevingong.com/Polyominoes/
http://www.gef.free.fr/pento.html
» The Pentomino Dictionary by Gilles Esposito-Farèse Open in a new browser window
   English words that can be written using the pentomino name letters FILNPTUVWXYZ and other related curiosities, including a homage to Georges Perec. (English/French).
   http://www.gef.free.fr/pento.html
http://www.recmath.com/PolyPages/
» The Poly Pages Open in a new browser window
   About various polyforms - polyominoes, polyiamonds, polycubes, and polyhexes.
   http://www.recmath.com/PolyPages/
http://www.combinatorics.org/Volume_3/Abstracts/v3i1r27.html
» The Three Dimensional Polyominoes of Minimal Area Open in a new browser window
   L. Alonso and R. Cert's abstract of a paper published in vol. 3 of the Elect. J. Combinatorics. Full paper available in different formats (.pdf, postscript, tex etc).
   http://www.combinatorics.org/Volume_3/Abstracts/v3i1r27.html
http://www.fam-bundgaard.dk/SOMA/SOMA.HTM
» Thorleif's SOMA Page Open in a new browser window
   SOMA puzzle site with graphics, newsletter and software.
   http://www.fam-bundgaard.dk/SOMA/SOMA.HTM
http://xprt.net/~munizao/mathrec/pentcol.html
» Three Nice Pentomino Coloring Problems Open in a new browser window
   Alexandre Owen Muñiz presents the Icehouse set which lends itself to different polyomino coloring games.
   http://xprt.net/~munizao/mathrec/pentcol.html
http://www.math.ucf.edu/~reid/Research/Halfstrip/
» Tiling Rectangles and Half Strips with Congruent Polyominoes Open in a new browser window
   Michael Reid's abstract of paper in the "Journal of Combinatorial Theory, Series A".
   http://www.math.ucf.edu/~reid/Research/Halfstrip/
http://www.math.ufl.edu/~squash/tilingstuff.html
» Tiling Stuff Open in a new browser window
   Jonathan King examines problems of determining whether a given rectangular brick can be tiled by certain smaller bricks. Includes numerous articles in .pdf format.
   http://www.math.ufl.edu/~squash/tilingstuff.html
http://www.math.ucf.edu/~reid/Research/Eight/
» Tiling a Square With Eight Congruent Polyominoes Open in a new browser window
   Michael Reid's abstract of a paper in the "Journal of Combinatorial Theory, Series A".
   http://www.math.ucf.edu/~reid/Research/Eight/
http://www2.math.uic.edu/~fields/puzzle/puzzle.html
» Tiling of Pythagorean Triplets Open in a new browser window
   Joe Fields suggests that L-decomposition of squares of Pythagorean triplets could always be tiled.
   http://www2.math.uic.edu/~fields/puzzle/puzzle.html
http://www.math.ucf.edu/~reid/Research/Notched/
» Tiling with Notched Cubes Open in a new browser window
   Robert Hochberg and Michael Reid exhibit an unboxable reptile: a polycube that can tile a larger copy of itself, but can't tile any rectangular block. Abstract of article to "Discrete Mathematics".
   http://www.math.ucf.edu/~reid/Research/Notched/
http://www.angelfire.com/mn3/anisohedral/unbalanced.html
» Unbalanced Anisohedral Tiling Open in a new browser window
   Joseph Myers and John Berglund found a polyhex that must be placed in two different ways in a tiling of a plane, such that one placement occurs twice as often as the other.
   http://www.angelfire.com/mn3/anisohedral/unbalanced.html
http://www.geom.uiuc.edu/java/tetris/
» Unbeatable Tetris Open in a new browser window
   Java applet demonstres that this tetromino-packing game is a forced win for the side dealing the tetrominoes. Complete with mathematical proof. [Java]
   http://www.geom.uiuc.edu/java/tetris/
http://www.apperceptual.com/tesseract.html
» Unfolding the Tesseract Open in a new browser window
   Peter Turney lists the 261 polycubes that can be folded in four dimensions to form the surface of a hypercube, and provides animations of the unfolding process.
   http://www.apperceptual.com/tesseract.html

This category needs an editor

Last Updated: 2007-01-02 17:54:38



Help build the largest human-edited directory on the web.
Submit a Site - Open Directory Project - Become an Editor

The content of this directory is based on the Open Directory and has been modified by AllMusicSearch.com editors

Free previews by Thumbshots.org